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Determination and characterization of resistance reactions of

crops against fungal pathogens are essential to select resistant

genotypes. In plant breeding, phenotyping of genotypes is

realized by time consuming and expensive visual plant ratings.

During resistance reactions and during pathogenesis plants

initiate different structural and biochemical defence mechanisms,

which partly affect the optical properties of plant organs.

Recently, intensive research has been conducted to develop

innovative optical methods for an assessment of compatible and

incompatible plant pathogen interaction. These approaches,

combining classical phytopathology or microbiology with

technology driven methods — such as sensors, robotics,

machine learning, and artificial intelligence — are summarized by

the term digital phenotyping. In contrast to common visual rating,

detection and assessment methods, optical sensors in

combination with advanced data analysis methods are able to

retrieve pathogen induced changes in the physiology of

susceptible or resistant plants non-invasively and objectively.

Phenotyping disease resistance aims different tasks. In an early

breeding step, a qualitative assessment and characterization of

specific resistance action is aimed to link it, for example, to a

genetic marker. Later, during greenhouse and field screening, the

assessment of the level of susceptibility of different genotypes is

relevant. Within this review, recent advances of digital

phenotyping technologies for the detection of subtle resistance

reactions and resistance breeding are highlighted and

methodological requirements are critically discussed.
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Resistance of crop plants to fungal pathogens
The most sustainable tool in crop protection is breeding

of resistant plant varieties. In general, disease resistance is

characterized as an observed phenotype in a specific

environment on which a pathogen (fungi, bacteria, or

viruses) is not able to cause a disease. The cultivation

of resistant crops can reduce the applications of plant

protections products and therefore reduce negative

impacts of agriculture on the environment.

In crop plants a multifaceted defence system is involved

during pathogen attack [1,2]. Several functional processes

can underlie disease resistance and different phases in

the infection or developing stage of a pathogen can be

affected, respectively. Among these, pathogen resistance

can be related to mechanical barriers (e.g. the wax layer,

cuticle, or cell wall) hindering the penetration or prolif-

eration of a fungal pathogen [3]. In specific interaction

types, a hypersensitive response (HR) — described as the

rapid development of cell death at and around infection

sites occur [2]. Both inhibit growth of the pathogen into

the plant tissue, and thus reducing the production of

infectious structures, such as spores or conidia. Geneti-

cally, incompatibility or resistance is often driven by a

specific interaction between the pathogen’s avirulence

(avr) gene loci and alleles of the corresponding plant

disease resistance (R) locus [4].

Plant breeding is a dynamic process, considering the

performance of varieties in differing environments, in

which the integration of technological progress is an

important aim. Continuous research is necessary to

increase the genetic resistance pool of crop plants

without compromising yield or quality parameters

[5]. Occasionally plant pathogens overcome effective

plant resistances, due to recombination or spontaneous

mutations — facilitated by a high and fast reproduction

rate of especially fungal pathogens. Resistance is never

permanent and boom and bust cycles have been

observed in the past especially for pathogens like rust

or powdery mildews in cereals, exhibiting on gene per

gene interaction to their host plant [6]. Furthermore,

globalization, human activities and climate change pro-

mote favorable conditions for emerging pathogens

[7,8]. In such a dynamic environment, a couple of steps
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make the breeding process time and labor intensive and

therefore it is not possible to react ad hoc to pathogen

developments [9,10]. Most prominently, there is a

bottleneck since the capacity and the throughput dur-

ing the traditional phenotyping process by human

experts is still comparatively low [11,12�]. Detection,

characterization and integration of host–pathogen inter-

action during the breeding process are still time and

labor intensive and there is an increasing demand to

accelerate these steps significantly.

Within this context, recent innovations and develop-

ments for plant breeding are most welcome. Besides

new breeding technologies such as CRISPR-Cas

[13,14], digital phenotyping [15,16�] will significantly

form and influence plant resistance breeding.

Digital phenotyping to uncover incompatible
host–pathogen interaction
The assessment of incompatible host–pathogen interac-

tions or resistance reaction is compared to the assessment

of plant diseases significantly more complex and chal-

lenging (Figure 1). Resistance reaction — such as hyper-

sensitive reactions or lignification — take place on the
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cellular level and are highly subtle. Multiple changes

occur at differing time points and cause changes in the

physiology and biochemistry of a plant. The complexity

increases even more, since interaction among a plants

genotype and the pathogen are highly individual as well.

Therefore, these mechanistic processes are difficult to

phenotype. Recently, different studies provided evi-

dence, that these subtle processes of host–pathogen

interaction in turn influence the optical properties of

plants (reviewed in Mahlein et al. [17��]). In general,

changes in reflectance and optical properties of plants

resulting from plant pathogens can be explained by

impairments and changes in the leaf structure and highly

specific chemical compositions of the tissue during path-

ogenesis. During the last decade, several non-invasive

sensors were established to enable a deeper view into the

interaction types [18,19��]. Besides the non-invasive man-

ner of these technologies, it is a further advantage that

image assessment and analysis can be performed in a

fraction of time compared to common methods and in

high throughput [20,21].

Especially hyperspectral imaging and non-imaging sen-

sors are valuable tools to be implemented in breeding
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routines on different scales: from the tissue to the canopy

level. For plant breeding, two differing aspects are of

interest — a quantitative approach and a qualitative

approach. Quantitative assessment, for example, the dis-

ease severity of a leaf pathogen is relevant in breeding

trials for rating the behavior of genotypes, lines or varie-

ties under disease pressure. Imaging technologies provide

the potential to detect plant diseases and enable a quan-

tification in percentage of the diseased leaf area [22]. A

recent study of Thomas et al. [23] correlated disease

severity, assessed by hyperspectral imaging in an auto-

mated Mini-Plot screening greenhouse to disease rating

by human experts and scores from official variety trials

with high accuracy. It was possible to quantify powdery

mildew symptoms automatically through a combination

of Simplex Volume Maximization and Support Vector

Machines in a data-driven analysis routine. The qualita-

tive assessment or characterization of a specific resistance

reaction is more complex. Until now only few

researchers integrated sensor technologies for an assess-

ment (i.e. disease scoring) and characterization (i.e.

understanding the underlying mechanisms of plant path-

ogen interaction) of resistance reactions of plants to

pathogens. There are advantages and disadvantages

on the assessment scale which have to be considered

critically. Future research also has to consider

improved sensor platforms and vehicles for field and
Figure 2
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high-throughput applications. It is expected, that new

developments in the field of robotics will speed up the

integration into agricultural practice.

Equipment and measurement setup: current
potential and limitation of technology
From the technical perspective, four different kinds of

hyperspectral sensor technologies are available: push

broom scanner, whisk broom scanner, filter-based sensor

and non-imaging sensor [20,24]. These sensors provide

different pro and cons: push broom and whisk broom

scanners have a comparatively high spatial and spectral

resolution, but the measuring process is time-consuming

and the subsequent data processing is more complex

since objects are scanned line by line. Filter-based system

measure an object waveband by waveband. The measur-

ing process is comparatively time consuming and vignett-

ing effects cause often partially noisy data within an

image. Snap-shot system are desirably, but so far existing

systems have either a non-acceptable low spectral and/or

spatial resolution. The required calibration routines do

not exist and therefore the spectral signal is not plausible.

The choice of the sensor depends on the application and

sensor platform and often requires a well thought balance

between spatial resolution, information content of the

measurement, the time available and finally the costs
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(Figure 2) [25,26]. In breeding gardens, for example a

larger area coverage is often required, which may be

balanced by using fast and cheap sensors. Here UAVs,

tractor-based or stationary platforms are often used

[27,28,29�,30,31]. For understanding functional relation-

ships in host–pathogen interactions, specialized high

resolution sensors are often more appropriate [32,33].

For the detection and assessment of plant resistance reac-

tions on a small-scale hyperspectral microscopes enable the

analysis and assessment of individual host–pathogen inter-

actions in detail [17��]. In the study of Kuska et al. [33], the

hyperspectral reflectance of powdery mildew, diseased

barley leaves and resistant leaves were recorded in time

series measurements. The results revealed a characteristic

development of the spectral pattern for the different host–

pathogen interactions. By applying a machine learning

approach, the authors established the identification of

powdery mildew diseased leaves one to two days before

symptoms became visible. In addition, race-specific resis-

tance of barley against powdery mildew was analyzed and

the spectral reflectance characteristics were linked to

hypersensitive reactions [34]. A similar system was used

foran improvedphenotypingapproachofCercosporabeticola
spots on sugar beet [35]. In accordance with the hyper-

spectral reflectance pattern, the authors showed that the

Cercospora leaf spot symptoms have different functional

regions, which depend on the genotype of the sugar beet

and linked to susceptibility, resistance or tolerance. Going

deeper into the details of the genetic background of inves-

tigated genotypes, Leucker et al. [36] showed that HSI can

be used to analyse the effect of QTLs and their resistance

effect against C. beticola. Until now the hyperspectral

microscope systems are limited for lab applications,

because of the low throughput and highly reduced field

of view of below 1 cm. However, for specific applications a

trade-off among spatial details and assessment throughput

is acceptable. Several studies successfully demonstrated

the use of digital phenotyping on crop or canopy scale.

Pretorius et al. [37] for instance consistently detected QTL

regions to stripe rust in wheat populations from spectral

data, indicating that remote sensing technologies can be

applied in genetic mapping of stripe rust resistance on the

field scale. Further studies integrated hyperspectral imag-

ing successfully on the leaf scale for proximal sensing and

phenotyping, for example, Septoria leaf blotch (STB) [38].

Yu et al. [39�] investigated the same pathosystem on the

canopy scale. Both studies developed quantitative metrics

for infection levels of STB and were able to link wheat

genotypes to differing susceptibility. As reflected by

Rebetzke et al. [40��] following this approach a greater

diversity in larger population sizes can be captured com-

bining an improved repeatability and robustness in resis-

tance screening.

Furthermore, many systems cannot utilize the ‘whole’

electromagnetic spectrum (ultraviolet, UV; visible, VIS;
www.sciencedirect.com 
near infrared, NIR; shortwave infrared, SWIR). The

SWIR spectral range can provide additional insights into

host–pathogen interactions and may be included in the

measurement portfolio [41]. A hyperspectral imaging

system that uses two push broom cameras (from

400 to 2500 nm) enabled the assessment of the resistance

status and resistance mechanism of different grapevine

cultivars to Plasmopara viticola infestation on the leaf

scale [42]. The HyperArt is also a platform that can

measure the wavelengths from 400 to 2500 nm by using

two hyperspectral cameras [43]. The system provides a

simultaneous assessment of spectral reflectance and

transmittance, which can be used to calculate the light

absorption [44].

The benefit of the above-mentioned approaches is mani-

fold, but what are the critical aspects, and what is

demanded to provide these technologies for breeding

practice? So far, a significant number of researches were

performed for phenotyping disease resistance. All of these

works focussed on a specific host–pathogen system;

opportunities to transfer the results and insights to other

systems are limited. Measuring setups are prototypes,

tailored to the specific task. Here especially the scale

of assessment (cellular, leaf, single plant, canopy) influ-

ences the implemented technologies. The complexity of

the sensor setup is high and experts can only perform

running the platform. These experts are trained scientists

with differing background and so far: learning by doing

still characterizes the situation.

The measuring environment and scale significantly deter-

mine the opportunities and limitations of hyperspectral

imaging for plant resistance phenotyping. Today, still the

throughput and precision correlate negatively. A high pre-

cision investigation of lignification as a resistance response

is possible sample by sample using a complex hyperspectral

imaging microscope. Here the measuring conditions are

stable andthereproducibilityunderartificial illumination is

high. For field phenotyping, environmental conditions are

not stable and sun light intensity, wind, rain and abiotic

stress to plants influences the data quality [reviewed in Ref.

24]. Therefore, several platforms use a curtain and artificial

illumination to exclude the influence of natural light. A

huge potential lies in new and innovative platforms from

robotics [17��] and UAV technologies. But here often the

weight of the sensor which can be carried and the focal

plane limits the use of specific sensors [29�].

For a high throughput, online routines are desirable; that

is, the data assessment and data analysis are performed

immediately after each other on the platform computer.

This is so far limited computing capabilities of on-board

computers and the complexity of machine learning algo-

rithms, therefore often offline approaches, with data

assessment and decision or management action are sepa-

rated are still the standard.
Current Opinion in Plant Biology 2019, 50:156–162
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A positive aspect which has been respected during the last

decade is the establishment of several high-quality

research centers for phenotyping technologies. Among

them (to name just some) are the Australian Plant Phe-

nomics Facility, Adelaide Australia, the Donald Danford

Center in St. Louis, Missouri USA, the Excellence Ini-

tiative PhenoRob at the University of Bonn and Research

Center in Jülich, Germany and the e-Agri Sensors Center

at the University of Manchester UK. In addition, tradi-

tional breeding centers such as the CIMMYT, Mexico or

the IPK Gatersleben, Germany invest in infrastructure

and establish research groups within the topic. This

research and investment are crucial for bridging the step

into breeding routine.

From complex data to meaningful
interpretation: linking spectral signatures to
individual interactions
From a technical, biological and functional perspective,

optical sensors and hyperspectral imaging are future ori-

ented technologies for resistance breeding. However, there

are several critical aspects and challenges: Data are often

collected at massive scale — up to several TeraBytes, if

plants are monitored over time. Manual labelling is often

prevented as subtle changes are hard to locate or their rare

occurrence is covered by the natural variability. Sophisti-

cated algorithms and powerful hardware systems have to be

tailored to a specific application, a transfer among crop

species and pathosystems is not always possible. Further-

more, experts with complementary skills and scientific

backgrounds such as phytopathology, plant breeding, infor-

matics or electrical engineering have to integrate their

knowledge to yield ‘easy to interpret’ insights from data

representations with a biological meaning. The available

toolbox contains many new algorithms and data analysis

routines [45,46��]. Methods from the field of artificial

intelligence (e.g. data mining, machine learning, and pat-

tern recognition) and computational sustainability already

contribute to provide solutions for plant phenotyping, even

in high-throughput setups [46��,47,48]. Recently, fast data-

driven approaches for mining sensor data in resistance

screening are a significant step forward to meet the

demands of interpretability and scalability [49,50�]. Arche-

typal signatures, characteristic for interaction types can be

assessed while avoiding the risk of losing information and

without time-intensive data labelling [51]. The presented

methods have one limiting factor in common. First off all,

parameters cannot be generalized and have to be individu-

ally adapted to data characteristics and features of interest.

Secondly, the ratio of training sample size and required

model complexity is decisive for the optimization process.

These training data are needed either for training the

model and/or afterwards for model evaluation. The anno-

tation process has to be done by human experts and is time

consuming. Therefore, many prediction models in resis-

tance phenotyping by hyperspectral imaging face the prob-

lem of limited training data. To compensate they may rely
Current Opinion in Plant Biology 2019, 50:156–162 
on available models pre-trained on millions of images,

which in plant science literally do not exist. Here we need

more open source data and collaboration among research-

ers. Hugh data machines such as Google or Facebook easily

can produce billions of training data for a specific class, but a

database of spectral resistance patterns would help to

overcome this limitation.

A future task is to integrate genotype–phenotype data for a

holistic view on disease resistant genotypes based on digital

phenotyping, genome sequencing data, to extensive tran-

scriptomic, methylomic and metabolomic data [52,53].

Results and approaches are of utmost interest. However,

so far only few pilot studies attempted to include phenotype

to genotype data to explore host–pathogen systems. Kuska

et al. [54] linked enzyme activity profiles to multispectral

data of barley-powdery mildew interaction in high-through-

put for the identification of biomarkers. Similarly, Arens et al.
[41] correlated metabolic markers and hyperspectral data for

a screening of resistant sugar beet to Cercospora leaf spot. In

the context of data integration, we expect a significant step

forward within the next five years.

Conclusion
Digital phenotyping technologies as an integrative approach

of plant pathology, sensors and artificial intelligence support

the investigation of crop resistance against plant pathogens.

So far, there is not one standard measuring setup or data

analysis approach, which can be generalized for the differing

tasks in plant resistance phenotyping. An integration of

genotype–phenotype data for a holistic view on disease

resistance will provide new insights into host–pathogen

interaction.  Future challenges include the development of

scale and environmentally independent features. Hyper-

spectral, scale independent fingerprints or spectral libraries

of specific resistance mechanisms support the idea of an

accelerated digital phenotyping in high throughput.
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