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Abstract
Previous studies investigating the performance of transmission and reflection datasets for disease detection showed inconsist-
ent results. Within the studies, the performance of transmission imaging varied significantly for the detection of biotroph and 
necrotrophy plant pathogens, while reflection imaging showed excellent results in both studies. The current study explores 
the hypothesis that the disparity between these results might be correlated with the different interactions of the respective 
pathogens with the host plants and the way light interacts with the plant tissue. Pyrenophora teres f. teres and Puccinia 
hordei—the causative agents of net blotch and brown rust in barley—have been investigated with focus on early-stage detec-
tion and quantification (disease severity) of symptoms. Datasets of hyperspectral imaging time-series measurements were 
analysed through application of multiple data analysis methods (support vector machines; principal component analysis 
with following distance classifier; spectral decomposition) in order to compare the performance of both datasets for the 
detection of disease symptoms. It could be shown that transmittance-based brown rust detection (e.g. 12% disease severity) 
is outperformed by reflectance-based detection (e.g. 36% disease severity) regardless of the algorithm. However, both the 
detection and quantification of brown rust through transmittance were more accurate than those of powdery mildew in ear-
lier studies. Transmittance and reflectance performed similar for the detection of net blotch disease during the experiments 
(~ 1% disease severity for reflection and transmission). Each data analysis method outperformed manual rating in terms of 
disease detection (e.g. 15% disease severity according to manual rating and 36% through support vector machines for rust 
reflection data). Except for the application of a distance classifier on net blotch transmittance data, it could be shown that 
pixels, which were classified as symptomatic through the data analysis methods while estimated to represent healthy tissue 
during manual rating, correlate with areas at the edges of manually detected symptoms. The results of this study support the 
hypothesis that transmission imaging results are highly correlated with the type of plant–pathogen interaction of the respec-
tive pathogens, offering new insights into the nature of transmission-based hyperspectral imaging and its application range.

Keywords  Puccinia hordei · Pyrenophora teres f. teres · Data analysis · Disease detection · Hyperspectral imaging · 
Reflectance · Transmittance

Introduction

The use of optical sensors for plant phenotyping and detec-
tion of both abiotic and biotic stresses has become increas-
ingly common as a research focus (Roitsch et al. 2019; 
Mahlein et al. 2019; Oerke 2020). However, the overwhelm-
ing majority of current studies are focussed on measuring 
the properties of light which is reflected from the plant tis-
sue in order to correlate changes with plant stress reactions 
(Kuska et al. 2015; Alisaac et al. 2018; AlSuwaidi et al. 
2018). Meanwhile research into the possibilities of the spec-
tral properties of light which has been transmitted through 

 *	 Anne‑Katrin Mahlein 
	 Mahlein@ifz-goettingen.de

1	 Department of Phytopathology (360a), Institute 
of Phytomedicine (360), University of Hohenheim, 
70599 Stuttgart, Germany

2	 INRES Plant Disease, University of Bonn, 53115 Bonn, 
Germany

3	 IBG2: Plant Sciences, Research Centre Jülich, 52428 Jülich, 
Germany

4	 Institute of Sugar Beet Research (IfZ), 37079 Göttingen, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s41348-022-00570-2&domain=pdf


506	 Journal of Plant Diseases and Protection (2022) 129:505–520

1 3

the plant tissue is rarely conducted (Zhang et al. 2016; Hovi 
et al. 2018; Sun et al. 2018). Recent studies about the possi-
bilities of transmitted light for plant–pathogen detection with 
hyperspectral imaging sensors showed inconsistent results.

Thomas et al. (2017) performed a measurement of com-
bined reflection and transmission with focus on plant–path-
ogen interaction with hyperspectral imaging sensors. The 
authors investigated barley leaves, which were inoculated 
with conidia of Blumeria graminis f. sp. hordei—the causa-
tive agent of powdery mildew—with the HyperArt meas-
urement setup (Bergsträsser et al. 2015) for simultaneous 
measurement of reflection and transmission. The results of 
the study showed that it is possible to detect powdery mil-
dew infection of barley leaves at leaf level two days before 
symptoms are visible on RGB images through automatically 
analysed reflection-based hyperspectral data. Furthermore, 
it could be shown that the combination of reflection and 
transmission data was advantageous to distinguish late pow-
dery mildew symptom and spontaneous necrosis of resistant 
barley leaves. However, the results of the study did show that 
transmission-based detection of powdery mildew symptoms 
was not possible before symptoms on the leaves were already 
visible for two days with reflection-based RGB imagery. 
These results stood in contrast to the study of Bergsträsser 
et al. (2015), which performed single measurements of vis-
ible symptoms of Cercospora beticola infection on sugar 
beet leaves. It was shown that reflection and transmission-
based data performed equally for the detection of disease 
symptoms. Thomas et al. (2017) theorised that this could be 
explained based on the different interaction of the two patho-
gens with the plant tissue. While powdery mildew symp-
toms, caused by the biotroph pathogen Blumeria graminis 
f. sp. hordei, develop as small pustules on the leaf surface 
with the fungi only penetrating the epidermis cells of the 
plant (Bhat et al. 2005; Dean et al. 2012), Cercospora leaf 
spot symptoms, caused by the necrotroph pathogen Cercos-
pora beticola, appear as necrotic lesions on the leaves once 
the fungi switches to its necrotic phase after penetrating the 
leaf tissue through the stomata and spreading intercellularly 
(Steinkamp et al. 1979; Rangel et al. 2020). In this article, 
further studies into the matter and principle of transmission 
measurement via optical sensors are presented in an attempt 
to confirm the hypothesis of Thomas et al. (2017).

Light interacts with plant leaves in a complex matter. 
Upon reaching the plant surface (cuticle and epidermis), a 
significant portion of the light is directly reflected and can 
be measured, providing information about the plant surface 
it interacted with (Fig. 1). The portion of the light which is 
neither reflected nor absorbed by the plant’s surface enters 
the plant tissue, where it is scattered diffusely as it inter-
acts with organelles and intercellular air spaces (Vogelmann 
et al. 1989). During the passing of the plant tissue, a small 
amount of light is reflected back to the upper surface, and 

the majority of light travels through the plant’s mesophyll 
layer and the lower epidermis of the leaf. Upon reaching the 
surface-air border, the majority of the diffusely scattered 
light is reflected back into the plant, with only a small por-
tion is being transmitted through the leaf as it arrives at the 
surface-air border in the right angle (Fig. 1; Brakke 1994). 
The light, which was reflected, is scattered diffusely once 
more as it travels back through the plant tissue layers up 
to the surface-air border of the upper epidermis, where a 
small portion is being transmitted and measured together 
with the surface reflection by reflection-based imaging 
methods, while the larger portion of the light is reflected 
back into the leaf tissue again (Fig. 1). This complex process 
allows the plant to maximize the usage of incoming light 
for photosynthesis (Brakke 1994). These processes provide 
the reason why it is possible to detect metabolic changes 
in plants with reflection-based measurement. The study of 
Nansen (2018) did also show that hyperspectral measure-
ments have a considerable penetration of measured objects. 
Their study showed that different backgrounds influence leaf 
measurements—especially with multiple layers of leaves 
being measured.

This could explain why reflection measurement outper-
forms transmission measurement for biotroph pathogens 
like Blumeria graminis f. sp. hordei, which mostly interact 
with the plant at the epidermis layer, as direct reflection at 
the plant surface permits the detection of the fungal tissue. 
Meanwhile transmitted light would mix with light, which 
has not interacted with fungal tissue or affected epidermis 
cells, due to diffuse scattering while traversing the leaf tis-
sue, reducing the detection efficiency. Necrotroph pathogens 
like Cercospora beticola tend to be more invasive in their 
interaction with the host plant, which would result in a simi-
lar detection accuracy to biotroph pathogens in reflectance 
measurement, but an increased performance in transmittance 
measurement, as the traversing light, interacts with the path-
ogen and infected plant tissue in deeper layers of the leaf.

This study aims to provide insights into the matter of 
transmittance measurements of plant–pathogen interaction 
through practical experiments with a set of pathogens with 
diverse lifestyles. Measurements with the HyperArt setup 
were performed with barley leaves inoculated with patho-
gens, which interact with different layers of the plant tissue, 
as time-series measurements.

Puccinia hordei, the causative agent of brown rust, is a 
biotrophic pathogen, which enters infected barley leaves 
through the stomata (Fig. 2b; Voegele 2006). Once inside 
the plant mesophyll, the fungi grows, forming intercellu-
lar haustoria to feed upon the plant before finally forming 
colonies, which break through the epidermis to release new 
spores (Fig. 2b; Voegele 2006).

Pyrenophora teres f. teres (anamorph: Drechslera teres), 
the causative agent of net blotch, is a necrotrophic pathogen. 



507Journal of Plant Diseases and Protection (2022) 129:505–520	

1 3

Fig. 1   Pathway of light when 
interacting with a plant leaf. 
Upon reaching the plant's 
surface, a portion of the light is 
reflected back from the cuticle 
(C) and epidermis (Ep), while 
the rest of the light enters the 
plant tissue in a diffusely scat-
tered manner (L1, blue cone). 
The light crosses both palisade- 
(Pm) and spongy mesophyll 
(Sm)—being partially absorbed 
and scattered back to the leaf 
surface as indirect reflection—
before reaching the epidermis 
and cuticle un the bottom of the 
leaf. Here, a portion of the light 
is transmitted, thereby exiting 
the leaf as transmitted light 
(L1, blue arrows), while the 
rest is being reflected at the leaf 
surface-air border and traverses 
the mesophyll tissue again while 
being diffusely scattered (L2, 
orange cones). Upon reaching 
the epidermis and cuticle of the 
top of the leaf, a portion of L2 
is transmitted as indirect reflec-
tion and would be measured 
with the light coming from the 
surface reflection, while the 
rest is reflected from the leaf 
surface-air border to continue 
its path through the leaf (L3, 
yellow cones). St = stomata, 
Vb = vascular bundle
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It penetrates directly through the cuticle, cell wall, and cell 
membrane of the host plants epidermis cells, where it forms 
a primary and secondary intracellular vesicle (Fig. 2c; Liu 

et al. 2011). When the secondary vesicle is formed, the host 
epidermis cell—as well as nearby epidermis cells—is func-
tionally disrupted. A hypha forms intracellular from the 

Fig. 2   Interactions of the 
pathogens Blumeria graminis f. 
sp. hordei (a), Puccinia hordei 
(b) and Pyrenophora teres f. 
teres (c) with barley leaves. 
C = cuticle, Ep = epidermis, 
Pm = palisade mesophyll, 
Sm = spongy mesophyll, 
St = stomata, Vb = vascular bun-
dle, Co = conidia, Gt = germina-
tion tube, Ap = appressorium, 
Pp = penetration peg, Hs = haus-
torium, Em = epiphytic mycelia, 
Cp = conidiophores, Sp = Spore, 
Vs = vesicle, Ih = infection 
hypha, Hm = haustorial mother 
cell, C = colony, H = hyphae
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secondary vesicle and breaks into the intercellular space of 
the mesophyll, where it secretes toxins/effectors which lead 
to the disruption of nearby mesophyll cells to provide the 
necrotrophic fungi with nutrients (Fig. 2c; Liu et al. 2011).

The two pathogens interact in a different way compared 
to B. graminis f. sp. hordei. The development of P. hordei 
is relatively subtle at first—before the plant tissue gets dis-
rupted through the fungi breaking through the epidermis. 
Its growth within the mesophyll should allow for increased 
detection with transmission-based imaging, due to a reduced 
effect of the light scattering at pathogenic structures deeper 
within the leaf tissue. P. teres f. teres causes rapid cell death, 
which should result in similar results as the measurement of 
spontaneous necrosis in the study of Thomas et al. (2017) 
and should be comparable with the characteristic necrotic 
lesions in the centre of Cercospora beticola symptoms, 
which were investigated by Bergsträsser et al. (2015).

Through this approach—while taking into account the 
results of previous articles in regards to performance of 
reflectance and transmittance datasets—it should be pos-
sible to shed light on the performance of transmission imag-
ing based on the differing plant–pathogen interactions of 
biotroph and necrotrophy pathogens. Multiple data analy-
sis methods (both supervised and unsupervised) have been 
applied to the respective datasets in order to minimize the 
potential impact on disease detection accuracy. Thereby, 
observed differences between the performance of reflection 
and transmission datasets can be attributed to the different 
host–pathogen interactions of the investigated diseases. The 
use of an unsupervised data analysis method and its com-
parison with the presented supervised methods is especially 
promising, as it does not rely on training data and thereby 
can both reduce workload and the potential for human error 
during data labelling.

Materials and methods

Plant cultivation and pathogen material

Hordeum vulgare L. cv. Ingrid wild type (Hinze et al. 1991) 
plants were grown in TEKU VQB 7 × 7 × 8 cm pots (Pöp-
pelmann, Lohne, Germany) and filled with commercial 
substrate (Klasmann-Deilmann GmbH, Geeste, Germany) 
inside a climate chamber at 20/20 °C (day/night) 60% rela-
tive humidity (RH) and day light period of 16 h. At growth 
stage 12 according to BBCH scale (Hack et al. 1992), the 
plants were inoculated with the respective pathogens and 
placed in high humidity environment (> 90%) and indi-
rect lighting conditions for two days to maximize chance 
of infection before the second leaf of each plant was fixed 
within a custom plastic frame. Twelve plants were used as 
healthy control, being inoculated with water, and 12 plants 

were inoculated with a spore suspension (60,000 spores/
ml; spores were collected from infected wheat plants and 
stored at − 80 °C to be used for inoculation directly after 
thawing) of P. hordei (stored field isolate from the area near 
Bonn) and 6 plants were inoculated through placement of 
cut leaves, showing heavy symptoms of P. teres f. teres 
infection, gathered around the area of Bonn. The inocula-
tions were performed by spraying the spore suspensions and 
placing leaf pieces equally over the to be inoculated plant 
leaves for the two days the plants spend under high humidity 
conditions.

Hyperspectral imaging measurement

The HyperArt system was used to measure reflection and 
transmission of the plants simultaneously during the experi-
ment (Bergsträsser et al. 2015; Thomas et al. 2017; Patent 
nr: DE102012005477). The system was modified accord-
ing to Thomas et al. (2017). All leaves were measured in 
the visible and near infrared areas of the electromagnetic 
spectrum (400–1050 nm) in a daily time-series measurement 
from 3 days after inoculation (dai) to 9 dai. Measurements 
at earlier times were not possible, due to the requirement 
of the fungi to have high humility for infection of barley 
leaves. The leaves were kept fixated within the custom 
plastic frames over the entire measurement period to ease 
comparison of disease development at different images in 
the time series for data analysis. For each measurement, a 
99% reflectance white standard (Spectralon, Labsphere Inc., 
North Dutton, NH, USA) and a white diffuser lambertian 
transmission foil (Zenith Polymer® ≈ 50% transmission, 
SphereOptics GmbH, Uhldingen, Germany) was acquired, 
before measuring the leaf sample. These measurements 
served as white references for reflection and transmission 
images for the image normalization (Bergsträsser et  al. 
2015). Wavelength-dependent differences in the percentage 
of the reflected and transmitted light of the two white refer-
ences were taken into consideration during the normaliza-
tion process. With each measurement, a dark current image 
of the internal camera noise was measured by closing an 
internal camera shutter.

Data analysis

The reflectance and transmittance of the images were calcu-
lated by normalising the acquired images over the according 
white references, serving as standards with known reflection/
transmission values, with ENVI 5.1 + IDL 8.3 (ITT Visual 
Information Solutions, Boulder, CO, USA). The normal-
ized images were smoothened through the application of the 
Savitzky–Golay filter (Savitzky and Golay 1964) to elimi-
nate noise within the hyperspectral datasets for further anal-
ysis. Background masking and separating the hyperspectral 



510	 Journal of Plant Diseases and Protection (2022) 129:505–520

1 3

images to single leaves were performed through an auto-
mated algorithm (thresholding based on global average). In 
contrast, the transmission images required manual extraction 
due to their spectral properties being indistinguishable at 
places where parts of the frame were covering the plants in 
order to hold them in place. Due to significant noise within 
the data at the extremes of the sensor range, the analysed 
spectral range was reduced to 450–1000 nm.

The collected datasets of reflection- and transmission-
based leaf images with developing net blotch and brown rust 
symptoms, respectively, were analysed with three different 
data analysis algorithms—support vector machines (SVM, 
Cortes and Vapnik 1995), spectral decomposition (SD, Kes-
hava and Mustard 2002), and a combination of principal 
component analysis (PCA) with following distance classifier 
(DC, Mahalanobis et al. 1996). The SVM represents a super-
vised approach of data analysis, in which a set of generated 
training data is used as basis for classification. The SD is 
an unsupervised method, which generates classes based on 
distinct datapoints within the analysed dataset. The combi-
nation of PCA and DC finally represents a mixed approach 
of reducing data dimensionality with the unsupervised PCA 
and sorting the resulting correlation of pixels with the prin-
cipal components into pre-generated classes with the super-
vised DC. Classification results of data analysis approaches 
are investigated in combination with manual rating (MR) to 
compare the potential of both the reflection and transmission 
datasets for the characterization and detection of differing 
plant–pathogen interactions.

In order to prepare the dataset for analysis of its variance 
with principal component analysis, all spectral signatures 
were normalized into the unit Euclidian norm to eliminate 
the influence of non-biologic variance to the measurement. 
Thereby, the signatures/vectors are treated as points on a 
high dimensional unit sphere (Dhillon and Modha 2001; 
Leucker et al. 2016b), capturing the vectors direction while 
reducing the variance in the dataset. After these prepara-
tions, the PCA was performed. PCA is a statistical method 
which introduced a new axis along the greatest variance into 
the dataset, thereby transforming it based onto the variance 
and reducing the data complexity (Wold et al. 1987). The 
PCAs were performed over the healthy control leaves and 
the respective inoculated leaves within the dataset, including 
both reflection and transmission-based images. A supervised 
classification to determine disease symptoms on the leaves 
was performed through the application of the DC algorithm 
(Minimum distance classifier with centroid match method 
and Euclidian distance) on the results of the PCA. The DC 
uses a set of training data in order to classify every pixel of 
the image based on its distance in the Euclidian space from 
known classes.

An independent analysis of the data was performed by 
applying a nonlinear support vector machines algorithm on 

the normalized dataset, which was used for the PCA with 
following DC. The applied SVM used radial basis func-
tion as kernel function to determine linear discriminant 
functions.

The DC and SVM were both trained with a set of labelled 
training data, which was generated by an expert, using con-
trol- and inoculated leaf images of six healthy and six inocu-
lated leaves, respectively, at 7 dai from rust and net blotch 
datasets in order to classify both early and late stages of 
disease symptoms. Each leaf within the dataset averaged 
between 9000 and 14,000 pixels, with the selected training 
data for each generated class averaging between 50 and 500 
pixels, based on class rarity within the images. The manu-
ally annotated data were ordered into 14 classes (brown rust 
symptoms (early/late, reflection/transmission); net blotch 
symptoms (early/late, reflection/transmission); healthy tis-
sue (leaf surface1/leaf surface2/leaf vein/leaf tip, reflection; 
leaf surface1/leaf vein, transmission)) and used as reference 
within the above classifications. Classes, which referred to 
healthy plant tissue of their respective datasets, have been 
combined and are shown as one colour in the result section, 
due to the focus on disease detection over slight differences 
in leaf reflection/transmission within different part of the 
leaf. For the comparison with manual rating and the manual 
rating itself, the classes were simplified to symptomatic and 
healthy tissue for their respective datasets, as a precise dif-
ferentiation for each pixel into different disease stages or 
via the human eye and without the consultation of spectral 
signatures for the pixels was not feasible.

Finally, unsupervised spectral decomposition—based on 
the mixed pixel approach—was used to analyse the data-
sets. Spectral decomposition factorizes the matrix, which is 
made up of the to-be analysed hyperspectral dataset, into a 
canonical form, representing it in terms of its eigenvalues 
and eigenvectors. This algorithm was applied unsupervised, 
with the program selecting mixed pixels of the image so as 
to determine the eigenvalues. The abundance of these eigen-
values within the dataset was then calculated to give out 
both an abundance map with abundance per pixel, as well 
as a classification of the image over the generated classes.

The data analysis methods were performed with the 
FluxTrainer 2.9.0.1 Software (LuxFlux GmbH, Reutlingen, 
Germany).

Leaves were manually rated by an expert at the end of the 
experiment 9 dai. The manual rating was performed with a 
Pseudo-RGB image as basis with the goal to label healthy 
and infected leaf tissue. Unlike the generated training data, 
each pixel of the images was sorted into the classes healthy 
and symptom during this rating to compare disease severity 
visible by eye with the results of the different data analy-
sis methods. Pixels that showed clearly identifiable disease 
Symptoms with the bare eye were labelled as Symptom, 
while other pixels were labelled as healthy.
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The results of the manual rating were used as comparison 
for post classification of the data. This was achieved via a 
two-ways approach. The leaf images of different dates were 
compared with each other in order to determine if the clas-
sification results which showed pixels as diseased without 
visible symptoms correlate with symptom development at 
later dates (Figs. 3 and 4). Furthermore, the classifiers and 
MR were analysed through confusion matrices of the clas-
sification results from the different data analysis methods on 
both reflection and transmission datasets. Confusion matri-
ces were computed via a C +  + program. The results of the 
confusion matrices were visualized (see Figs. 7 and 8) to 
determine if the grouping of pixels that was classified as 
symptomatic in the algorithms but not the MR correlate with 
the expected development of disease symptoms to further 
validate the data analysis.  

Results

Manual assessment of the gathered datasets

The water-inoculated control plants did not show any devel-
opment of disease symptoms of either net blotch or brown 
rust over the course of the experiment.

The plants which were inoculated through direct contact 
to leaf pieces, infected with P. teres f. teres, developed net 
blotch symptoms. First symptoms of the net blotch disease 

became visible at 5 dai both in reflection- and transmission-
based images and slowly progressed until the last measure-
ments were taken at 9 dai (Fig. 3). During this time, the 
symptoms developed from the initially infected areas of the 
host plants leaves, which had direct contact with infected 
leaf parts during inoculation. Throughout the symptom 
development, the net blotch symptoms proved to be equally 
visible in reflection and transmission images, showing simi-
lar leaf discoloration and symptom area (Fig. 3). During 
manual rating of the disease severity at 9 dai, the reflection 
and transmission data were rated with 0.72 and 0.69 percent 
of the leaf area showing symptomatic tissue, respectively 
(Table 1).

The plants which were inoculated with P. hordei (Ph) 
spore suspension developed without exception brown rust 
symptoms over the course of the experiment. First disease 
symptoms became visible at 5 dai in the reflection-based 
images and 6 dai in the transmission-based images—with 
the symptoms being easier to distinguish in the reflection-
based data (Fig. 4). Symptoms developed over the entire leaf 
area, starting with discrete, small chlorotic spots at the initial 
infection sites. Typical yellow, chlorotic areas were forming 
on the leaves at 5 dai and growing, with brown spore colo-
nies breaking through the epidermis and becoming visible 
from 7 dai until the end of the experiment—this process 
could be clearly observed in the reflection-based images 
(Fig. 4). Meanwhile, in the transmission-based images this 
process could only be observed as a slight darkening of 

Fig. 3   Reflection and trans-
mission images of an Ingrid 
wild type leaf, inoculated with 
Pyrenophora teres f. teres over 
the course of the experiment. 
The Pseudo-RGB images are 
compared with false colour 
images, representing the classes 
healthy (green colours) symp-
tom (red) and artefact (black) 
of the respective data analysis 
methods. RGB = Pseudo-
RGB, SVM = Support Vector 
Machines, DC = Distance Clas-
sifier, SD = Spectral Decompo-
sition
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the symptomatic leaf areas, which became visible at 6 dai, 
and the development of brown spots in the middle of the 
described darkened areas, starting at 7 dai (Fig. 4). Dur-
ing manual rating of disease severity—based on reflection 
and transmission datasets—15.25 and 5.04 percent of the 
leaf tissue were rated as symptomatic tissue, respectively 
(Table 1).

Analysis of the respective reflection‑ 
and transmission‑based data through three 
distinctive data analysis methods

The datasets for the investigated pathogens—for both reflec-
tance and transmittance data—were analysed with the three 
distinct data analysis methods (SVM, DC, SD), as described 
above.

The leaf images of the control plants were classified 
as healthy tissue for both reflectance and transmittance 

with the exception of < 0.1% of the pixels, which were 
classified as disease symptoms for SVM and SD classifi-
cation. The falsely classified pixels were located either at 
the edge of the leaves or in the areas where the frame was 
covering parts of the leaves during measurement (Fig. 5). 
Thereby, containing mixed information of the respective 
reflected/transmitted light of both the measured leaf and 
the black background/frame. The DC algorithm—based on 
the results of the previously performed PCA—performed 
noticeably worse, having overall the highest tendency to 
falsely classify pixels in the above-mentioned areas with 
up to 0.3% of pixels being falsely classified as symptoms. 
The DC classification also was unable to differentiate 
between symptoms and the leaf vein in the transmission-
based images of the net blotch dataset, causing pixels of 
the leaf veins to be classified as disease symptom, increas-
ing the falsely classified pixels up to 10% in this specific 
case (Fig. 5).

Fig. 4   Reflection and trans-
mission images of an Ingrid 
wild type leaf, inoculated 
with Puccinia hordei over the 
course of the experiment. The 
Pseudo-RGB images are com-
pared with false colour images, 
representing the classes healthy 
(green colours) and symptom 
(yellow and red colours) of 
the respective data analysis 
methods. RGB = Pseudo-
RGB, SVM = Support Vector 
Machines, DC = Distance Clas-
sifier, SD = Spectral Decompo-
sition

Table 1   Disease severity 
calculation of net blotch and 
brown rust inoculated leaves 
at 9 days after inoculation 
with different data analysis 
algorithms and comparison with 
manual rating

DC, Distance Classifier; SVM, Support Vector Machines; SD, Spectral Decomposition; r, reflectance; t, 
transmittance

Net blotch r (%) Net blotch t (%) Brown rust r (%) Brown rust t (%)

Manual rating 0.72 0.69 15.25 5.04
SVM 1.04 1.05 35.92 11.72
DC 2.4 11.18 37.9 20.75
SD 1.12 0.98 27.35 13.98
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Both DC and SD algorithms were able to detect net 
blotch symptoms within the reflectance images of the inoc-
ulated leaves at 4 dai—one day before the symptoms were 
visible with the human eye—and able to track the develop-
ment of the symptoms during the following measurement 
days, whereby the DC did show a clearer detection of early 
symptoms but was also more prone to misclassify pixels 
containing healthy tissue as symptoms (Fig. 3). For trans-
mission-based images, the algorithms were able to detect 
first net blotch symptoms at 5 dai, showing a slightly 
reduced performance in early disease detection compared 
to reflectance-based data (Fig. 3). The SVM-based clas-
sification performed notably worse for early detection in 
reflection-based images. Despite using the same training 
data set as the DC, first symptoms were only detected at 7 
dai. Meanwhile, the transmittance images allowed a detec-
tion of the symptoms at 5 dai, performing similar to the 
other two algorithms (Fig. 3).

At 9 dai, the final measurement day for the experiment, 
net blotch symptoms could be classified by all three data 
analysis methods in both reflectance and transmittance 
images, correlating with the results of manual labelling of 
disease symptoms—both in disease severity (Table 1) and 
location of disease symptoms on the leaf (Fig. 5). A notable 
exception being the DC algorithm for the transmission-based 
image, as the above-mentioned classification error of the 
leaf vein persists, causing a disparity of about 10% in dis-
ease severity compared to manual rating results and other 
methods.

When looking in more detail at the classification of the 
specific pixels within the images through the application of 
confusion matrices with the manual rating serving as the 
standard method for comparison of the different classifica-
tion results with classic disease detection approaches. In 
order to achieve this, one leaf for ach pathogens was manu-
ally rated, with the leaf for brown rust consisting of 13,048 
and the one for net blotch of 13,418 manually annotated 
pixels. The results show, that all three algorithms have a 
high accuracy for the correct classification of healthy tissue 
and symptoms within the reflection data (89.6% for SVM 
and 84.5% for SD), with the DC algorithm outperforming 
the other two for disease detection (100%; Table 2). Within 
the transmission dataset, the accuracy of all three algorithms 
is reduced (78.4% for SVM, 70.1% for SD and 97.9% for 
DC), with DC showing an uncharacteristically high error 
margin for misclassification of healthy tissue (10.6%) due 
to the misclassification of pixels showing the leaf vein as 
symptoms (Table 2).

Within the brown rust dataset, the SVM classified first 
pixels in reflectance images as disease symptoms at 4 dai, 
one day before the disease became visible with the human 
eye and classifies symptomatic leaf areas correctly over 
the course of the experiment (Fig. 4). In the transmission-
based images, the SVM only detects disease symptoms at 6 
dai. Due to high difficulties in differentiating early disease 
symptoms and healthy tissue, it was, however, necessary 
to create multiple classes of healthy leaf tissue within the 
training data for both SVM and DC. As wheat leaves are 

Fig. 5   Reflection and transmis-
sion image of an Ingrid wild 
type leaf, inoculated with Pyr-
enophora teres f. teres at 9 days 
after inoculation. The Pseudo-
RGB images are compared with 
false colour images, represent-
ing the classes healthy (green 
colours), symptom (red), and 
artefact (black) of the respec-
tive data analysis methods, 
as well as with the results of 
manual rating of the image 
by an expert. RGB = Pseudo-
RGB, SVM = Support Vector 
Machines, DC = Distance Clas-
sifier, SD = Spectral Decompo-
sition, MR = Manual Rating



514	 Journal of Plant Diseases and Protection (2022) 129:505–520

1 3

not entirely homologous in their reflection and transmission 
properties—based on leaf age, leaf structures, leaf angle, 
etc.—and the early pathogen signatures being similar to 
those of the control leaves multiple distinct classes at dif-
ferent pathogen stages and at healthy leaf areas with specific 
features have been created. This explains the early misclas-
sification of pixels showing healthy leaf tissue as disease 
symptoms at 4 dai for the DC (Fig. 4). As shown in Fig. 4, 
the DC classification increases in accuracy over the course 
of the experiment, correlating significantly better with the 
results of the other data analysis methods at 8 and 9 dai 
(36/12% for SVM reflectance/transmittance, 38/21% for DC 
reflectance /transmittance). When applied to the transmit-
tance images, the DC does not have these issues, accurately 
detecting disease symptoms from 6 dai onwards like the 
SVM. The transmission-based dataset could be classified 
with only a single class for healthy tissue, showing a more 
uniform spectral signature over the leaf area when compared 

with the reflectance dataset. Disease symptom detection with 
the SD classified first disease symptoms at 5 dai and 6 dai 
for reflectance and transmittance images, respectively, and 
shows accurate detection over the course of the experiment 
(Fig. 4), with a slightly reduced disease severity assess-
ment compared to SVM and DC (27/14% for reflectance/
transmittance).

Comparison of the classification results at 9 dai shows 
that all data analysis algorithms achieve significantly higher 
disease severity ratings then manual rating for both reflec-
tance (e.g. 36% for SVM compared to 15% for manual rat-
ing (brown rust)) and transmittance (e.g. 12% for SVM 
compared to 5% for manual rating (brown rust)) datasets 
(Table 1), while the spatial distribution of symptomatic pix-
els within the images matches for data analysis methods and 
manual rating (Fig. 6).

The post-classification results of the respective confu-
sion matrices show that the selected algorithms are able to 
accurately detect disease symptoms, which were labelled in 
the manual rating, in both reflection (97% for SVM, 86.3% 
for DC, 88.3% for SD) and transmission (86% for SVM, 
95.5% for DC, 92.3% for SD) data (Table 2). The detection 
accuracy of the SVM for reflectance images being notably 
higher than other algorithms. Both DC and SD have a higher 
accuracy for transmittance image symptom detection, while 
the accuracy of the SVM decreases when compared with the 
results of reflection data. All algorithms classified a high 
percentage of pixels which did not show clearly visible dis-
ease symptoms—and where thereby marked as healthy tis-
sue in the manual rating—as symptoms (25.8% for SVM, 
30.4% for DC, 16.5% for SD) for the reflectance images, 
while the results of the transmittance images show a lower 
error margin (Table 2).

Discussion

The results of this study show differences within the per-
formance of transmission-based measurement approaches, 
depending on the way pathogens interact with the host plant. 
Within this study, the biotroph pathogen Puccinia hordei 
and the necrotroph pathogen Pyrenophora teres f. teres 
have been investigated with both reflection and transmis-
sion measurement approaches. Combined with the results 
of Thomas et al. (2017), which investigated the reflection 
and transmission-based detection of the biotroph patho-
gen Blumeria graminis f. sp. hordei and theorized the 
low performance of transmission data was related to the 
interactions of light with the tissue while passing the leaf, 
this allows the estimation of cases in which the addition 
of transmission-based approaches would be beneficial for 
increased accuracy in disease detection. B. graminis f. sp. 
hordei mainly interacts with the epidermis layer of the plant, 

Table 2   Results of confusion matrix on images classified with man-
ual rating compared to the applied data analysis methods for net 
blotch and brown rust infected leaves at 9 days after inoculation

Values in percent represent the percentage of the total amount of 
pixels within the respective classes, which were classified correctly 
based on the results of the manual rating
DC, Distance Classifier; SVM, Support Vector Machines; SD, Spec-
tral Decomposition

Manual rating

Net blotch Brown rust

Healthy (%) Symptom 
(%)

Healthy (%) Symptom 
(%)

Reflection
SVM
Healthy 99.6 0.4 74.2 25.8
Symptom 10.4 89.6 3 97
DC
Healthy 98.3 1.7 69.6 30.4
Symptom 0 100 13.7 86.3
SD
Healthy 99.4 0.6 83.5 16.5
Symptom 15.5 84.5 11.7 88.3
Transmis-

sion
SVM
Healthy 99.5 0.5 92.2 7.8
Symptom 21.6 78.4 14 86
DC
Healthy 89.4 10.6 84.1 15.9
Symptom 2.1 97.9 4.5 95.5
SD
Healthy 99.5 0.5 90.2 9.8
Symptom 29.9 70.1 7.7 92.3
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while P. hordei—albeit also a biotroph pathogen—grows 
into the intercellular space and interacts with cells within the 
mesophyll layer (Fig. 2). The necrotroph pathogen P. teres 
f. teres secretes mycotoxins, which cause necrosis over all 
layers of the leaf tissue in areas where the mycelium of the 
pathogen is present (Fig. 2). This study provides insights 
about the interaction of transmitted light with the different 
pathogens and thereby its potential for disease detection, 
based on the performance of transmission measurement for 
the detection and quantification of the pathogens with their 
differing host–pathogen interactions and the comparison 
with reflection-based measurement.

Evaluation of transmission‑based imaging data 
for disease detection

The theory postulated by Thomas et al. (2017) that light 
scattering within the leaf influences the disease detection 
through transmittance images and thereby the interactions 
of pathogens with the host plant play an important role in 
detection speed and accuracy is supported by the results of 
the current study.

It could be shown that net blotch symptoms are detected 
with no substantial differences in disease severity at later 
stages. This was true for both manual rating of reflectance 
and transmittance images, as well as classification results 
with SVM and SD (Table 1). The combination of PCA and 
DC did classify a notably higher number of pixels in the 
transmittance data as diseased, and this can be explained due 
to the inability of the algorithm to discern pixels showing 

the leaf veins from pixels with disease symptoms (Table 2). 
Figure 7 shows that the majority of pixels which were classi-
fied as showing symptoms in the transmission images of the 
DC results while being labelled as healthy in the MR align 
with the leaf vein placement on barley leaves. These results 
coincide with the findings of Bergsträsser et al. (2015), 
which investigated the advantages of combined reflectance 
and transmittance measurements for disease severity esti-
mation on developed Cercospora leaf spot symptoms via a 
comparison of Cercospora leaf spot index results derived 
from reflectance and transmittance images. Like the net 
blotch disease, which was investigated in this study, Cer-
cospora leaf spot disease also causes necrotic lesions on 
infected sugar beet leaves (Mahlein et al. 2012; Leuker et al. 
2016). The results of both studies also correlate with find-
ings of Thomas et al. (2017) that transmission-based images 
allowed for precise detection of spontaneous necrosis on 
leaves and their differentiation from late stage powdery mil-
dew symptoms, which required more complex methodology 
when differentiated through reflection-based data.

In contrast, the estimation of disease severity of brown 
rust on barley leaves within this study showed that the 
estimates based on transmittance images were lower com-
pared to reflectance image-based estimates (Table 1). The 
algorithms did each classify a significant number of pixels, 
which could not be labelled as symptomatic during the MR, 
into the symptoms group for both reflectance and transmit-
tance images (Table 2). The location of these pixels shows 
that they are mostly located at the outer edges of areas 
which were labelled as symptoms through MR, hinting at 

Fig. 6   Reflection and trans-
mission image of an Ingrid 
wild type leaf, inoculated with 
Puccinia hordei at 9 days after 
inoculation. The Pseudo-RGB 
images are compared with 
false colour images, represent-
ing the classes healthy (green 
colours) and symptom (yellow 
and red colours) of the respec-
tive data analysis methods, 
as well as with the results of 
manual rating of the image 
by an expert. RGB = Pseudo-
RGB, SVM = Support Vector 
Machines, DC = Distance Clas-
sifier, SD = Spectral Decompo-
sition, MR = Manual Rating
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the possibility to detect brown rust infection before visible 
symptoms appear at a given location (Fig. 8). Despite the 
success of the algorithms for disease detection, it showed 
that the estimated disease severity in transmission-based 
images was significantly lower than reflection-based images, 
with MR and SVM showing the highest discrepancy of about 
66% between the results— ~ 15% and ~ 35% disease severity 
for reflectance and ~ 5% and ~ 11% for transmittance, respec-
tively (Table 1). Visibility of brown rust symptoms with 
the human eye within the transmittance images was mostly 
limited to areas where spore colonies had formed and broken 
through the leaf epidermis, with chlorotic lesions from prior 
rust development being barely visible once larger areas were 
infected. Nevertheless, the detection of brown rust symp-
toms was more accurate and could be earlier detected within 
transmission-based data and then, the powdery mildew 
symptoms in the study of Thomas et al. (2017), in which 

powdery mildew symptoms, were detected through princi-
pal component analysis. All used algorithms in the current 
study have shown to be able to detect disease symptoms one 
day after they became visible within the reflectance images 
(Fig. 4) compared to two days for powdery mildew in the 
previous study (see Thomas et al 2017, Fig. 6).

These findings show, that while pathogen detection 
through reflectance is similar for biotroph (B. graminis) 
and necrotroph (C. beticola) pathogens shown in earlier 
studies (Bergsträsser et al. 2015; Thomas et al. 2017), the 
detection efficiency through transmittance varies consid-
erably for pathogens investigated in the current study. 
Necrotroph pathogens like net blotch (current study) and 
Cercospora leaf spot disease (Bergsträsser et al. 2015) can 
be detected equally well through reflection and transmis-
sion at late disease development stages. Meanwhile, for 
biotroph pathogens, such as brown rust (current study) and 
powdery mildew (Thomas et al. 2017), reflection-based 

Fig. 7   False colour visual representation of confusion matrix results 
on net blotch infected leaves at 9 dai for reflection and transmission 
images. The images show the comparison of the respective data anal-
ysis method classification outcome compared to manual rating. Green 
and red pixels representing healthy and symptom classification which 
showed no difference for manual rating and classification. Light blue 
coloured pixels represent pixels which were classified as symptoms in 
the data analysis and healthy in the manual rating. Dark blue coloured 
pixels, respectively, represent pixels that were labelled as symp-
toms in the manual rating and classified as healthy through the data 
analysis. SVM = Support Vector Machines, DC = Distance Classifier, 
SD = Spectral Decomposition

Fig. 8   False colour visual representation of confusion matrix results 
on brown rust infected leaves at 9 dai for reflection and transmission 
images. The images show the comparison of the respective data anal-
ysis method classification outcome compared to manual rating. Green 
and red pixels representing healthy and symptom classification which 
showed no difference for manual rating and classification. Light blue 
coloured pixels represent pixels which were classified as symptoms in 
the data analysis and healthy in the manual rating. Dark blue coloured 
pixels, respectively, represent pixels that were labelled as symp-
toms in the manual rating and classified as healthy through the data 
analysis. SVM = Support Vector Machines, DC = Distance Classifier, 
SD = Spectral Decomposition
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pathogen detection outperforms transmission-based 
detection. Nevertheless, it could be shown that, when 
comparing the results of brown rust detection through 
transmittance data with the detection of powdery mildew 
symptoms in Thomas et al. (2017), the classification of 
brown rust symptoms through transmission-based data 
analysis is more accurate and allows for earlier detection 
of the pathogen then those for powdery mildew—with 
transmission imaging being able to detect powdery mildew 
two days after symptoms could be detected through reflec-
tion imaging, while brown rust could be detected with a 
delay of one day only. These trends can be explained by 
the interaction of transmitted light with the plant tissue 
(Fig. 1). As the light becomes diffusely scattered while 

traversing the leaf tissue, it stands to reason that more 
intrusive pathogens, which interact with deeper cell lay-
ers inside the leaf, would be less affected by these effects, 
then pathogens which interact with the plant surface and 
epidermis layers, such as powdery mildew (Fig. 9). As 
necrotroph pathogens cause significantly more cellular 
damage than biotroph pathogens and, like the example of 
net blotch shows (Fig. 2), interact with all layers of the 
leaf, it is reasonable that they would be best suited for 
transmission-based detection. These findings support the 
hypothesis of Thomas et al. (2017) that the differences in 
transmission-based disease detection for selected patho-
gens are rooted in the nature of their interaction with the 
host plant and suggest that transmission-based pathogen 

Fig. 9   Influence of diffuse light 
scattering inside plant leaf 
tissue for transmission-based 
measurement of pathogens 
which interact with the leaf 
surface and epidermis (Ep). 
Incoming light is colliding with 
the cuticle (C) and epidermis of 
the leaf, where a portion of the 
light is being directly reflected 
(R). This leads to a direct 
interaction of the reflected light 
with pathogens that grow on 
the leaf surface, resulting in 
a significant influence on the 
reflected lights wavelength. 
However, the portion of the 
light which is being transmit-
ted through the leaf is being 
diffusely scattered (L1, L2, L3). 
For non-intrusive pathogens like 
powdery mildew, a this leads 
to a significant overlap of light, 
which did not come in contact 
with the pathogen, when excit-
ing the leaf tissue as transmitted 
light (L1 + L2 + L3). For more 
intrusive pathogens like brown 
rust, b this effect is significantly 
reduced, as the light interacts 
with the pathogen in deeper 
plant tissue layers, thereby 
reducing the effect of the scat-
tering on detection accuracy for 
transmitted light. Pm = palisade 
mesophyll, Sm = spongy meso-
phyll, St = stomata, Vb = vascu-
lar bundle
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detection is correlated significantly with the intrusiveness 
of a given pathogen during its development inside the host 
tissue.

Early disease detection through transmission

It has been shown by multiple studies that hyperspectral 
reflectance imaging sensors are able to detect disease 
symptoms before symptoms are visible with the human 
eye (Kuska et al. 2015; Thomas et al. 2017; Behman et al. 
2018). So far, this could not be shown for images based 
on transmission, as studies with time-series measurements 
that compare the performance of reflectance and transmit-
tance hyperspectral images for early plant disease detec-
tion are, to the knowledge of the authors, not available—
besides Thomas et al. (2017). Within the study of Thomas 
et al. (2017), powdery mildew infection could be detected 
based on transmittance images at 6 dai, two days after 
detection was possible through the reflectance images and 
at a point when the disease symptoms were already visible 
by eye in reflection-based RGB images.

In the current study, both net blotch and brown rust 
symptoms in transmittance images could be detected one 
to two days after detection was possible in reflectance 
images for all applied data analysis methods—with the 
notable exception of net blotch symptom detection through 
SVM, which can be explained as the SVM failed to detect 
symptoms in the reflection-based dataset before 7 dai, 
while the two other algorithms managed to detect at 4 
dai. While this exception shows that under certain circum-
stances, it is possible to achieve earlier disease symptom 
detection through transmission-based images, it would be 
more suited to use an algorithm that performs better for the 
detection of net blotch symptoms as the symptoms were 
visible by eye at 5 dai.

From the results of these studies, it can be concluded 
that transmission-based measurements are not well suited 
for early disease detection, even from highly invasive patho-
gens. A possible explanation would be that pathogens like 
net blotch spread from their entry point at the leaf surface 
(Fig. 2), which might cause changes within the plants spec-
tral signature to be detected in reflectance images, while the 
internal light scattering inside the leaves prevents detection 
of these early plant/pathogen interactions through trans-
mission-based imaging (Fig. 9). While this effect would be 
reduced for more intrusive pathogens like brown rust and 
net blotch, it could cause an increase in mixed spectra—
containing partial information of symptomatic and healthy 
leaf areas within a pixel due to internal light scattering—
in the transmission data during early pathogen develop-
ment in transmission measurement compared to reflection 
measurement.

Comparison of data analysis methods for disease 
detection and disease severity estimation 
within this study

Due to the relatively small size of the datasets, which were 
collected in the experiments, it was decided that—while 
deep learning approaches have recently shown to be prom-
ising in plant stress detection (Golhani et al. 2018; Singh 
et al. 2018; Feng et al. 2020)—classical machine learning 
methods would be applied within the current study. While 
the datasets consist of two independent time series measure-
ments per pathogen, containing 12 and 6 plants, respectively, 
with thousands of pixels per leaf, it was deemed unlikely that 
the amount of data would be sufficient for the requirements 
of deep learning approaches (Singh et al. 2018). Meanwhile 
machine learning methods have shown excellent results for 
the analysis of optical data for the estimation of plant param-
eters in the past, as well as recent studies (Wahabzada et al. 
2015; Heckmann et al. 2017; Ugarte Fajardo et al. 2020).

Three different data analysis methods have been used in 
this study and were compared to MR of the RGB images in 
order to verify the results of the experiments and minimize 
the risk that the conclusions are adequate to investigate the 
characteristics of transmitted light for the investigation of 
plant–pathogen interactions. In comparison with the MR, 
every algorithm achieved a higher disease severity esti-
mation for both net blotch (Fig. 5) and brown rust (Fig. 6) 
symptoms both for reflectance and transmittance images 
(Table 1). These results, while promising, are posing the 
question if the classifications of the different algorithms 
are correct, or misclassifying pixels showing healthy tissue 
as symptomatic. To clarify this issue, the results of each 
algorithm were investigated twofold. First, the classifica-
tion results of images early in the time-series were com-
pared with pseudo-RGB images from later stages for both 
net blotch (Fig. 3) and brown rust (Fig. 4) datasets. As the 
leaves were fixed during the entire timeframe of the meas-
urements, it was possible to compare the placement of pixels 
within different visibility stages. Furthermore, the results 
of the post-classification through confusion matrices com-
pared to the MR were visualized for both net blotch (Fig. 7) 
and brown rust (Fig. 8) images at 9 dai. These visualiza-
tions show that the vast majority of the pixels which were 
classified as showing symptoms through the data analysis 
are grouped around clusters of pixels that were labelled as 
symptomatic in the MR. It was expected that the different 
data analysis methods are able to classify pixels without 
symptoms being visible to the human eye, as it is one of 
the main interests in analysing hyperspectral imaging data 
to detect disease symptoms before they are visible by the 
human eye in RGB images (Behman et al. 2018).

Among the data analysis methods, the combination of 
PCA and DC showed the highest estimations of disease 
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severity, but is also the method that has been shown to be 
most prone to mistakenly classify healthy tissue as symp-
toms for net blotch (transmission, Fig. 7) and brown rust 
(reflection, Fig. 8). In these cases, the SVM was able to 
clearly differentiate between disease symptoms and healthy 
tissue, while being trained on the same set of training data. 
The SVM as a supervised method performed well for both 
early detection and disease severity estimation, with the 
notable exception of net blotch reflectance images (Fig. 3). 
The unsupervised SD performed well in all cases, being able 
to detect symptoms as early as the supervised methods—
with the exception of brown rust reflectance, where the SVM 
was able to detect symptoms one day prior to other methods 
(Fig. 4)—and was overall the least prone to misclassifica-
tion. SD has the added advantage that the unsupervised algo-
rithm does not require training data in order to function and 
did classify disease symptoms and healthy tissue while gen-
erating fewer classes, then the supervised methods required. 
However, the SD had in all cases the lowest disease severity 
estimates when compared with other algorithms, but still 
outperformed MR (Table 1).

The combination and comparison of the results of differ-
ent data analysis algorithms ensured that no false conclu-
sions through performance abnormalities of a single algo-
rithm while investigating the properties of reflectance and 
transmittance datasets could occur. This was necessary, as 
it has been shown in earlier studies, that the accuracy of dif-
ferent machine learning methods can vary depending on the 
investigated dataset (AlSuwaidi et al. 2018; Barreto et al. 
2020). While outliers in algorithm performance, such as the 
late detection of brown rust symptoms in reflectance images 
of SVM and the misclassification of leaf vein pixels as net 
blotch symptoms through DC, occurred it was possible to 
identify them through comparison with the alternative data 
analysis algorithms employed within the study.

Conclusion

The postulated theory that the nature of the plant–pathogen 
interaction during pathogen infection is related to the pos-
sibility to detect disease symptoms through transmission-
based imaging is being supported by the results of this study. 
Thereby, the use of transmission measurement is most suited 
for invasive pathogens, which cause tissue damage in deeper 
layers of the leaf, or in order to separate stress factors which 
show a high similarity within the changes to the spectral 
signature of reflectance data. Transmission-based measure-
ments seem to be outperformed by reflection-based measure-
ments in general when it comes to early disease detection.
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